Status of COMET ~µ-e Conversion Search in J-PARC~

Yuki Nakai

(Kyushu University) on Behalf of the COMET Collaboration

九州大学 KYUSHU UNIVERSITY

15/08/2017

Proton beam with the highest intensity

Powerful proton beam : 8 GeV, 3.2 kW

Pulsed beam & time window

Lifetime of muonic Aluminum : 864 ns Time window : 700-1170 ns

Beam related BG free

Staging approach

<Phase-I > start in 2018 or 2019
(1) Beam measurement ~1-2 weeks
-> study of the new beam line
(2) Physics measurement ~half year
with sensitivity, O(10⁻¹⁵)
(improvement of ~100)

Physics measurement

with the highest sensitivity, **O(10⁻¹⁷)** (improvement of **10,000**)

Preparation of the COMET Phase-I is on going!

Status of the Facility & Magnet

15/08/2017

Detector System (StrECAL)

Beam measurement (in Phase-I)

Physics measurement (in Phase-II)

Straw Tube Tracker

extremely low material tube whose thickness < 20 um momentum resolution : < 200 keV/c<Performance for 105 MeV electron> requirement Spatial resolution : 143 um 200 um EM Calorimeter (ECAL) 20 x 20 x 120 mm³ LYSO crystals measures energy, event timing, hit position -> triggers signal events <Performance for 105 MeV electron > requirements Energy resolution : 4.22% 5% Position resolution : 7.6 mm 10 mm Time resolution : **0.4 ns** 1 ns

R&D has almost finished ! (including combined test) Mass production will start in near future

15/08/2017

StrECAL

Straw Tube Tracker

EM Calorimeter

Final Prototypes

Detector System (CyDet)

Physics measurement (in Phase-I)

Cylindrical Drift Chamber (CDC)

consists of 20 stereo layers Cylindrical Drift Chamber \sim 15,000 field wires, \sim 5,000 sense wires **momentum** resolution : < 200 keV/c <Performance of the prototype> requirement Spatial resolution : < 200 um at 1 T 200 um

Completed construction! (June 2016)

Under Commissioning with cosmic ray

Cylindrical Trigger Hodoscopes (CTH) plastic-scintillators and Cherenkov detectors

measures event time

identifies electron events

<Performance of the prototype> requirement

Time resolution : < 0.8 ns 1 ns S/N ratio : S/N > 100 20

15/08/2017

Cylindrical Trigger Hodoscopes prototype of the CTH

Flavour Physics Conference

(magnetic field = 1 T)

Sensitivity and Background Estimation (in COMET Phase-I with CyDet)

Type	Background	Estimated events
Physics	Muon decay in orbit	0.01
	Radiative muon capture	0.0019
	Neutron emission after muon capture	< 0.001
	Charged particle emission after muon capture	< 0.001
Prompt Beam	* Beam electrons	
	* Muon decay in flight	
	* Pion decay in flight	
	* Other beam particles	
	All (*) Combined	≤ 0.0038
	Radiative pion capture	0.0028
	Neutrons	$\sim 10^{-9}$
Delayed Beam	Beam electrons	~ 0
	Muon decay in flight	~ 0
	Pion decay in flight	~ 0
	Radiative pion capture	~ 0
	Anti-proton induced backgrounds	0.0012
Others	Cosmic rays [†]	< 0.01
Total		0.032
	† This estimate is currently limited by computing resource	ces.

Flavour Physics Conference

15/08/2017

$$B(\mu^{-} + \mathrm{Al} \to e^{-} + \mathrm{Al}) = \frac{1}{N_{\mu} \cdot f_{\mathrm{cap}} \cdot f_{\mathrm{gnd}} \cdot A_{\mu-e}}$$

1

N_μ : # of total muons stopped in the target (1.5 x 10¹⁶) muon yield : 4.7x10⁻⁴ muons per 8 GeV proton
 3.2 kW and 1.26x10⁷ sec operation (~146 days)

f_{cap} : Fraction of captured muons to total muons on target (0.61)

 f_{gnd} : Fraction of μ -e conversion to the ground state in the final state (0.9)

 $A_{\mu-e}$: Net signal acceptance (0.041)

Event selection	Value
Online event selection efficiency	0.9
DAQ efficiency	0.9
Track finding efficiency	0.99
Geometrical acceptance + Track quality cuts	0.18
Momentum window ($\varepsilon_{\rm mom}$)	0.93
Timing window ($\varepsilon_{\text{time}}$)	0.3
Total	0.041

15/08/2017

 μ -e conversion is a good probe for BSM search.

COMET Phase-I searches for μ -e conversion with a sensitivity of O(10⁻¹⁵).

The highest intensity proton beam in J-PARC achieves high statistics.

Pulsed beam and time window suppress beam related BG.

Experimental hall and so on have been built and transport solenoid have been installed. We have 2 detector systems; StrECAL and CyDet.

Both prototypes showed good performances.

Especially, CDC construction completed and commissioning is on going

S.E.S : **3 x 10**⁻¹⁵, which corresponds to **< 7x10**⁻¹⁵ (90% C.L.)

Estimated BG events : 0.032 events

15/08/2017

Flavour Physics Conference

14

backup slides

Transition

Ղո/Ա. Ա

որ դե

Energy (keV

Relative Intensity (%)

15/08/2017

 μ +>e γ and μ N->eN

15/08/2017

Prototype study has finished.

Construction of the CDC already completed. (June 2016)

Now under commissioning with cosmic ray

from upstream

CDC (under cosmic ray test)

CDC wires (in construction phase)

15/08/2017

Flavour Physics Conference

21

Front-end board for CDC

Front-end board for CTH

Mezzanine board + WFD board for ECAL (E-ROS)

WFD board for the straw tube tracker (ROESTI)

15/08/2017

Straw Tube Tracker

Align straw tube trackers along X&Y axis. (= a "station") 5 stations measure a track of incident charged particle. \rightarrow Reconstruct momentum of the charged particle.

Readout waveforms with 1 GSPS by a Front-end board.

 \rightarrow Can distinguish pileup events.

LYSO crystals (20 x 20 x 120 mm³) + APD -> placed cylindrically

(1) energy

(2) event timing

(3) hit position on ECAL

(4) supplying trigger(5) particle ID

requirements energy resolution : 5% time resolution : 1 ns position resolution : 10 mm

(use **momentum** measured by straw tube tracker) Record waveforms with 1 GSPS

LYSO Silicone rubber (EJ-560) APD (S8664-1010) connectors for slow control reflectors (2 layer) outer side : Teflon (BC-642) inner side : ESR APD Connectors for slow control APD board Coated with reflector Coated with reflector

Prototype

15/08/2017

triggers only electrons with high momentum

- Spectrometer transports electrons with high momentum to the detector system.
- measure momentum and energy with the tracker and ECAL respectively.

Pion Canture Section

Production

Muon

A section to capture pions with a large solid angle under a high solenoidal magnetic field by superconducting

> Detector Section A detector to search for

muon-to-electron conve

Protons