Charm Physics at **BES**II

Liang Sun (Wuhan University) On behalf of the BESIII Collaboration

XIIIth Rencontres du Vietnam, Flavour Physics Conference ICISE, Quy Nhon, Vietnam 13-19 August 2017

Outline

- BESIII experiment
- Datasets / analysis techniques
- Highlights of recent results on
 - (Semi-)leptonic D_(s) decays
 - Hadronic D_(s) decays
 - Λ_c decays

Beijing Electron Positron Collider (BEPCII)

BESIII Detector

Charm data sets at BESIII

- D⁰⁽⁺⁾ data
 - Taken @ E_{cm} = 3.773 GeV, L_{int} = 2.93 fb⁻¹
 - e+e- →D $^{0}\overline{D}^{0}/D$ +D-: 21 M D 0 and 16 M D+ produced
- D_s⁺ data
 - Taken @ E_{cm} = 4.009 GeV, L_{int} = 0.482 fb⁻¹
 - $e^+e^- \rightarrow D_s^+D_s^-$: 0.3 M D_s^+ produced
 - Taken @ E_{cm} = 4.178 GeV, L_{int} = 3.19 fb⁻¹
 - $e^+e^- \rightarrow D_s^*D_s$: 6 M D_s^+ produced
 - Accumulated in 2016
- Λ_c data
 - Taken @ E_{cm} = 4.599 GeV, L_{int} = 0.567 fb⁻¹
 - e⁺e⁻ → $\Lambda_c^+ \overline{\Lambda}_c^-$: 0.2 M Λ_c produced

$D^+ \rightarrow \tau^+ \nu \text{ via } \tau^+ \rightarrow \pi^+ \nu \text{ (> } 4\sigma, \text{ first evidence!)}$

Search for $D^{0(+)} \rightarrow a_0(980)^{-(0)} e^+ v_e$

- Nontrivial internal structure of light hadron mesons.
- With chiral unitarity approach in the coupled channels, BF is predicted to be ~5 x 10⁻⁵.
- **2-dimentional fit BESIII preliminary** Improve understanding of classification $D^0 \rightarrow a_0(980)^-e^+ v_e$ of light scalar mesons Events/(0.06GeV/c² Events/0.0364Ge/ (b) (a) 20 **5.9** σ $R \equiv \frac{\mathcal{B}(D^+ \to f_0 l^+ \nu) + \mathcal{B}(D^+ \to \sigma l^+ \nu)}{\mathcal{B}(D^+ \to a_0 l^+ \nu)}$ R= 1(3) if traditional qqbar 0.8 12 20.1 0 0.1 02 m_m/(GeV/c²) U/GeV Non-(tetra quark) system Signal D D $D^+ \rightarrow a_0(980)^0 e^+ v_a$ (W. Wang and C-D. Lu, PRD 82 034016 (2010) Events/0.0545GeV 20 Events/0.0364Ge/ (d) (c) 18 16 14 12 **3.0** σ 10 $B(D^0 \rightarrow a_0(980))$ e⁺ v_{μ}) x $B(a_0(980)) \rightarrow \eta \pi^{-}$ $= (1.12 \pm 0.29(\text{stat}) \pm 0.10(\text{syst})) \times 10^{-4}$ 20.2 ?0.1 0.8 1.2 0.2 0.1 m,,,/(GeV/c²) U/GeV $B(D^+ \rightarrow a_0(980)^0 e^+ v_a) \times B(a_0(980)^0 \rightarrow \eta \pi^0) =$ $B(D^+ \rightarrow a_0(980)^0 e^+ v_a) \times B(a_0(980)^0 \rightarrow \eta \pi^0)$ $= (1.47 + 0.66(stat) + 0.14(svst)) \times 10^{-4}$ < (2.7 x 10⁻⁴) at 90% C.L.

$D^0 \to \pi^- \mu^+ \nu$ and $D^+ \to \pi^0 \mu^+ \nu$ decays

Branching fractions Preliminary

 $B(D^0 \rightarrow \pi^- \mu^+ \nu) = (0.267 \pm 0.007 \pm 0.007)\%$

Measured with much improved precision

$$B(D^+ \to \pi^0 \mu^+ \nu) = (0.342 \pm 0.011 \pm 0.010)\%$$

Measured for the first time

• Isospin conservation: consistent

 $\frac{\Gamma(D^0 \to \pi^- \mu^+ \nu)}{2\Gamma(D^+ \to \pi^0 \mu^+ \nu)} = 0.990 \pm 0.054$

 Ratio for LU test in D⁰⁽⁺⁾→πl⁺v by combing B^{PDG}[D⁰⁽⁺⁾→πe⁺v] and B^{BESIII}[D⁰⁽⁺⁾→πe⁺v]

 $R_{\rm LU}^0$ =0.918±0.036

 $R_{\rm LU}^+$ =0.921±0.045

agree with expectation based on LU within 1.5 and 1.1 σ

3.19/fb data @ 4.178 GeV

 $D_{s}^{+} \rightarrow (K^{0}/K^{*0}) e^{+}\nu_{\rho} decays$

Branching fractions Preliminary

 $\begin{array}{l} Br[D_{s}^{+} \rightarrow \ \mbox{K}^{0}e^{+}\nu_{e}] = (3.25 \pm 0.38_{[stat]} \pm 0.16_{[syst]}) \ \mbox{x} \ 10^{-3} \ (3.9 \pm 0.9) \ \mbox{x} \ 10^{-3} \ [\mbox{PDG2017}] \\ Br[D_{s}^{+} \rightarrow \ \mbox{K}^{*0}e^{+}\nu_{e}] = (2.38 \pm 0.26_{[stat]} \pm 0.13_{[syst]}) \ \mbox{x} \ 10^{-3} \ (1.8 \pm 0.4) \ \mbox{x} \ 10^{-3} \ [\mbox{PDG2017}] \\ Much \ improved \ precision \end{array}$

□ The preliminary results for form factors:

Model	Parameter	Value	$f_{+}(0)$
Simple pole	$f_{+}(0) V_{cd} $	$0.175 \pm 0.010 \pm 0.001$	$0.778 \pm 0.044 \pm 0.004$
Modified pole model	$f_{+}(0) V_{cd} $	$0.163 \pm 0.017 \pm 0.003$	$0.725 \pm 0.076 \pm 0.013$
	α	$0.45 \pm 0.44 \pm 0.02$	
Series two parameters	$f_{+}(0) V_{cd} $	$0.162 \pm 0.019 \pm 0.003$	$0.720 \pm 0.084 \pm 0.013$
	<i>r</i> ₁	$-2.94 \pm 2.32 \pm 0.14$	

 $f_{+}(0)$ obtained by inserting $|V_{cd}| = 0.22492 \pm 0.00050$ from **CKMfitter**

Amplitude analysis of $D^+ \rightarrow K_s \pi^+ \pi^+ \pi^-$

Doubly tagged sample: $D^- \rightarrow K^+ \pi^- \pi^-$ vs. $D^+ \rightarrow K_S \pi^+ \pi^+ \pi^-$

In total: 4559 events with very high purity ~99%

New results!

An unbinned likelihood fit is performed using the signal PDF given by

$$f_S(p_j) = \frac{\epsilon(p_j)|M(p_j)|^2 R_4(p_j)}{\int \epsilon(p_j)|M(p_j)|^2 R_4(p_j) dp_j}$$

Four-body phase-space: R_4 Measurement efficiency: ε

• • • •		
Amplitude	<i>\$</i>	fit fraction
$D^+ \to K_S^0 a_1(1260)^+, a_1(1260)^+ \to \rho^0 \pi^+[S]$	0.000(fixed)	$0.567 \pm 0.020 \pm 0.044$
$D^+ \to K_S^0 a_1(1260)^+, a_1(1260)^+ \to f_0(500)\pi^+$	$-2.023 \pm 0.068 \pm 0.113$	$0.050 \pm 0.006 \pm 0.007$
$D^+ \to \bar{K}_1(1400)^0 \pi^+, \bar{K}_1(1400)^0 \to K^{*-} \pi^+[S]$	$-2.714 \pm 0.038 \pm 0.051$	$0.380 \pm 0.013 \pm 0.014$
$D^+ \to \bar{K}_1(1400)^0 \pi^+, \bar{K}_1(1400)^0 \to K^{*-} \pi^+[D]$	$3.431 \pm 0.137 \pm 0.117$	$0.015 \pm 0.004 \pm 0.005$
$D^+ \to \bar{K}_1(1270)^0 \pi^+, \bar{K}_1(1270)^0 \to K^0_S \rho^0[S]$	$=0.418 \pm 0.070 \pm 0.087$	$0.036 \pm 0.004 \pm 0.002$
$D^+ \to \bar{K}(1460)^0 \pi^+, \bar{K}(1460)^0 \to K^0_S \rho^0_0$	$-1.850 \pm 0.120 \pm 0.223$	$0.014 \pm 0.004 \pm 0.003$
$D^+ \to (K^0_S \rho^0)_A[D] \pi^+$	$2.328 \pm 0.097 \pm 0.068$	$0.011 \pm 0.003 \pm 0.002$
$D^+ \to K^0_S(\rho^0 \pi^+)_P$	$1.656 \pm 0.083 \pm 0.056$	$0.031 \pm 0.004 \pm 0.010$
$D^+ \to (K^{*-}\pi^+)_{\mathcal{A}}[S]\pi^+ \setminus {\mathcal{S}}$	$-4.321 \pm 0.047 \pm 0.073$	$0.132 \pm 0.011 \pm 0.011$
$D^+ \to (K^{*-}\pi^+)_A[D]\pi^+$	$0.989 \pm 0.158 \pm 0.229$	$0.013 \pm 0.004 \pm 0.004$
$D^+ \to (K^0_S(\pi^+\pi^-)_S)_A\pi^+$	$-2.935 \pm 0.060 \pm 0.125$	$0.051 \pm 0.004 \pm 0.003$
$D^+ \rightarrow ((K_S^0 \pi^-)_S \pi^+)_P \pi^+$	$1.864 \pm 0.069 \pm 0.288$	$0.022 \pm 0.003 \pm 0.003$

Measurement efficiency:
$$\varepsilon$$

Fit Fraction: $FF(n) = \frac{\sum_{k=1}^{N_{gen}} |\tilde{A}_n(p_j)|^2}{\sum_{k=1}^{N_{gen}} |M(p_j^k)|^2}$
Total amplitude: $M(p_j) = \sum_n c_n A_n(p_j)$
 $A_n(p_j) = P_n^1(m_1) P_n^2(m_2) S_n(p_j) F_n^1(p_j) F_n^2(p_j) F_n^D(p_j)$
Propagator Spin factor Blatt-Weisskoft barrier factor

12

Projections of invariant mass.

For the two identical pions, they are sorted with the invariant mass of $\pi^+\pi^-$ pair: lower one is denoted as π_1 , and the other one is denoted as π_2 .

Points with error bars: data, red histograms: fit, green histograms: background estimated from MC.

Fit fractions(FF) for different components

Component	BESIII	Mark III	E691
$D^+ \to K_S^0 a_1(1260)^+ (\rho^0 \pi^+)$	$0.567 \pm 0.020 \pm 0.044$	$0.539 \pm 0.057 \pm 0.070$	$0.830 \pm 0.140 \pm 0.200$
$D^+ \to K_S^0 a_1(1260)^+ (f_0(500)\pi^+)$	$0.050 \pm 0.006 \pm 0.007$		
$D^+ \to \bar{K}_1(1400)^0 \pi^+$	$0.372 \pm 0.015 \pm 0.016$	$0.277 \pm 0.047 \pm 0.080$	
$D^+ \to \bar{K}_1(1270)^0 \pi^+$	$0.036 \pm 0.004 \pm 0.002$		
$D^+ \to \bar{K}(1460)^0 \pi^+$	$0.014 \pm 0.004 \pm 0.003$	$N \alpha$	
$D^+ \to K^0_S \pi^+ \rho^0$	$0.044 \pm 0.005 \pm 0.005$		$0.070 \pm 0.040 \pm 0.060$
$D^+ \rightarrow K^{*-} \pi^+ \pi^+$	$0.139 \pm 0.012 \pm 0.020$		$0.330 \pm 0.060 \pm 0.140$
$D^+ \to K^0_S \pi^+ \pi^+ \pi^-$ nonresonant	$0.074 \pm 0.005 \pm 0.008$	$0.170 \pm 0.056 \pm 0.100$	$0.100 \pm 0.040 \pm 0.060$

Measurement of SCS Decays $D^0 \rightarrow \pi^0 \pi^0 \pi^0, \pi^0 \pi^0 \eta, \pi^0 \eta \eta$ and $\eta \eta \eta$

Mode	$N_{\rm DT}^{ m sig}$	Significance	$\mathcal{B}(\times 10^{-4})$	$\mathcal{B}_{\mathrm{PDG}} (\times 10^{-4})$
$\pi^0\pi^0\pi^0$	60 ± 13	4.8σ	$2.0\pm0.4\pm0.3$	< 3.5
$\pi^0\pi^0\eta$	42 ± 12	3.8σ	$3.8\pm1.1\pm0.7$	—
$\pi^0\eta\eta$	27 ± 6	5.5σ	$7.3\pm1.6\pm1.5$	—
$\eta\eta\eta$	_	_	< 1.3	-

3.19/fb data @ 4.178 GeV

First observations of $D_s^+ \rightarrow \omega \pi^+$ and $D_s^+ \rightarrow \omega K^+$

Signal mode	Branching fraction (${f 10^{-3}}$)	Statistical significance (σ)
$D_s^+ \to \omega \pi^+$	$1.85 \pm 0.30(stat.) \pm 0.19(sys.)$	7.7
$D_s^+ \to \omega K^+$	$1.13 \pm 0.24(stat.) \pm 0.14(sys.)$	6.2

3.19/fb data @ 4.178 GeV

$$\mathcal{B}_{D_s^+ \to p\bar{n}} = (1.22 \pm 0.10 \pm 0.05) \times 10^{-3}$$

BESIII preliminary

- Greatly improved accuracy over CLEO-c measurement of $(1.30\pm0.36^{+0.12}_{-0.16})\times10^{-3}$
- Consistent with the prediction of the enhanced BR due to long-distance effect via hadronic loop

Background:Argus function

Recent results based on Λ_c pair production @ mass threshold

The integrated luminosity = 567 pb⁻¹ (CPC 39, 093001 (2015)) Number of Λ_c produced ~ 0.2M (PRL 116, 052001 (2016))

Observation of $\Lambda_c^+ \rightarrow n \ K_s^0 \pi^+$ PRL 118, 112001 (2017) 0.57/fb data @ 4.599 GeV

- First direct measurement Λ_c decay involving the neutron in the final state.
- A test of the isospin symmetry.

 $\begin{aligned} &\mathsf{BF}(\Lambda_c^+ \to \mathsf{nK}_S^0 \pi^+) = (1.82 \pm 0.23 \pm 0.11)\% \\ &\mathsf{BF}(\Lambda_c^+ \to \mathsf{nK}^0 \pi^+) / \mathsf{BF}(\Lambda_c^+ \to \mathsf{pK}^- \pi^+) = (0.62 \pm 0.09)\% \text{ (w/ BESIII's meas*)} \\ &\mathsf{BF}(\Lambda_c^+ \to \mathsf{nK}^0 \pi^+) / \mathsf{BF}(\Lambda_c^+ \to \mathsf{pK}^0 \pi^0) = (0.97 \pm 0.16)\% \text{ (w/ BESIII's meas*)} \end{aligned}$

0.57/fb data @ 4.599 GeV

$Λ_c^+ → p η and p π^0$ PRD 95, 111102(R) (2017)

- First evidence of the SCS decay, $\Lambda_c^+ \rightarrow p \eta$ (4.2 σ stat. significance).
- No signals seen in $\Lambda_c^+ \rightarrow p \pi^0$.
- Predicted BFs vary under different theoretical models (SU(3) symmetry and FSI).

0.57/fb data @ 4.599 GeV

Observation of $\Lambda_c^+ \rightarrow \Sigma^- \pi^+ \pi^+ \pi^0$

Recently accepted to PLB

- First observation of CF decay, $\Lambda_c^+ \rightarrow \Sigma^- \pi^+ \pi^+ \pi^0$.
- and improved BF on $\Lambda_c^+ \rightarrow \Sigma^- \pi^+ \pi^+$.
- $\Sigma^{-} \rightarrow n\pi^{-}$ is reconstructed .

- Fit to
$$M_{n\pi^{-}}$$
 - M_{n} to extract the signal yields.
 $M_{n\pi^{-}} = \sqrt{(E_{\text{beam}} - E_{\pi^{+}\pi^{+}(\pi^{0})})^{2} - |\vec{p}_{\Lambda_{c}^{+}} - \vec{p}_{\pi^{+}\pi^{+}(\pi^{0})}|^{2}}$
 $M_{n} = \sqrt{(E_{\text{beam}} - E_{\pi^{+}\pi^{+}\pi^{-}(\pi^{0})})^{2} - |\vec{p}_{\Lambda_{c}^{+}} - \vec{p}_{\pi^{+}\pi^{+}\pi^{-}(\pi^{0})}|^{2}}$

 $BF(\Lambda_c^+ \to \Sigma^- \pi^+ \pi^+ \pi^0) = (2.11 \pm 0.33 \pm 0.14)\%$ $BF(\Lambda_c^+ \to \Sigma^- \pi^+ \pi^+) = (1.81 \pm 0.17 \pm 0.09)\%$

 $\Lambda_c^+ \rightarrow \Lambda + X$

~preliminary result~

- Current PDG : BF($\Lambda_c^+ \rightarrow \Lambda + X$) = (35±11)%

Large rate, but also with large uncertainty...

- Double tag method: Tagged with two modes; $pK\pi$ and pK_s .
- Extract yields from 2D distributions in bins of $p_{p\pi}$ and $|\cos\theta|$, where θ is the polar angle w.r.t. the beam pipe.

0.57/fb data @ 4.599 GeV

Summary

- $D_{(s)}$ and Λ_c data produced at mass threshold allow us to perform inclusive and exclusive branching fraction measurements with accuracy
- Double tag method provides clean samples for amplitude analyses
- A large range of recent (< 1 year) studies on $D_{(s)}$ and Λ_c decays are covered, more in the backup
- Stay tuned for more charm results from BESIII in the coming months, esp. on D_s and Λ_c decays
- BESIII will keep collecting data in the next ~ decade

Amplitude analysis of $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$ PHYSICAL REVIEW D 95, 072010 (2017)

Amplitude	ϕ_i	Fit fraction (%)
$\overline{D^0[S] \to \bar{K}^* \rho^0}$	$2.35 \pm 0.06 \pm 0.18$	$6.5 \pm 0.5 \pm 0.8$
$D^0[P] \to \bar{K}^* \rho^0$	$-2.25 \pm 0.08 \pm 0.15$	$2.3\pm0.2\pm0.1$
$D^0[D] o \bar{K}^* ho^0$	$2.49 \pm 0.06 \pm 0.11$	$7.9\pm0.4\pm0.7$
$D^0 \to K^- a_1^+(1260), a_1^+(1260)[S] \to \rho^0 \pi^+$	0(fixed)	$53.2 \pm 2.8 \pm 4.0$
$D^0 \to K^- a_1^+(1260), a_1^+(1260)[D] \to \rho^0 \pi^+$	$-2.11 \pm 0.15 \pm 0.21$	$0.3\pm0.1\pm0.1$
$D^0 \to K_1^-(1270)\pi^+, \ K_1^-(1270)[S] \to \bar{K}^{*0}\pi^-$	$1.48 \pm 0.21 \pm 0.24$	$0.1\pm0.1\pm0.1$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[D] \to \bar{K}^{*0}\pi^-$	$3.00 \pm 0.09 \pm 0.15$	$0.7\pm0.2\pm0.2$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270) \to K^-\rho^0$	$-2.46 \pm 0.06 \pm 0.21$	$3.4\pm0.3\pm0.5$
$D^0 \to (\rho^0 K^-)_A \pi^+, \ (\rho^0 K^-)_A [D] \to K^- \rho^0$	$-0.43 \pm 0.09 \pm 0.12$	$1.1 \pm 0.2 \pm 0.3$
$D^0 \to (K^- \rho^0)_{\rm P} \pi^+$	$-0.14 \pm 0.11 \pm 0.10$	$7.4\pm1.6\pm5.7$
$D^0 \rightarrow (K^- \pi^+)_{\text{S-wave}} \rho^0$	$-2.45 \pm 0.19 \pm 0.47$	$2.0\pm0.7\pm1.9$
$D^0 \rightarrow (K^- \rho^0)_{\nu} \pi^+$	$-1.34 \pm 0.12 \pm 0.09$	$0.4\pm0.1\pm0.1$
$D^0 \to (\bar{K}^{*0}\pi^-)_{\rm P}\pi^+$	$-2.09 \pm 0.12 \pm 0.22$	$2.4\pm0.5\pm0.5$
$D^0 ightarrow \overline{K}^{*0}(\pi^+\pi^-)_{ m S}$	$-0.17 \pm 0.11 \pm 0.12$	$2.6\pm0.6\pm0.6$
$D^0 \to (\bar{K}^{*0}\pi^-)_{\rm V}\pi^+$	$-2.13 \pm 0.10 \pm 0.11$	$0.8\pm0.1\pm0.1$
$D^0 \rightarrow ((K^-\pi^+)_{\text{S-wave}}\pi^-)_A \pi^+$	$-1.36 \pm 0.08 \pm 0.37$	$5.6\pm0.9\pm2.7$
$D^0 \to K^-((\pi^+\pi^-)_{\rm S}\pi^+)_{\rm A}$	$-2.23 \pm 0.08 \pm 0.22$	$13.1 \pm 1.9 \pm 2.2$
$D^0 \rightarrow (K^- \pi^+)_{\text{S-wave}} (\pi^+ \pi^-)_{\text{S}}$	$-1.40 \pm 0.04 \pm 0.22$	$16.3 \pm 0.5 \pm 0.6$
$D^0[S] \to (K^- \pi^+)_{\rm V} (\pi^+ \pi^-)_{\rm V}$	$1.59 \pm 0.13 \pm 0.41$	$5.4\pm1.2\pm1.9$
$D^0 \rightarrow (K^- \pi^+)_{\text{S-wave}} (\pi^+ \pi^-)_{\text{V}}$	$-0.16 \pm 0.17 \pm 0.43$	$1.9\pm0.6\pm1.2$
$D^0 \to (K^- \pi^+)_{\rm V} (\pi^+ \pi^-)_{\rm S}$	$2.58 \pm 0.08 \pm 0.25$	$2.9\pm0.5\pm1.7$
$D^0 \to (K^- \pi^+)_{\rm T} (\pi^+ \pi^-)_{\rm S}$	$-2.92 \pm 0.14 \pm 0.12$	$0.3\pm0.1\pm0.1$
$D^0 ightarrow (K^- \pi^+)_{ m S-wave} (\pi^+ \pi^-)_{ m T}$	$2.45 \pm 0.12 \pm 0.37$	$0.5\pm0.1\pm0.1$

Amplitude analysis of $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$ PHYSICAL REVIEW D **95**, 072010 (2017)

Four-body decay is in a five-dimensional phase-space. Here are 1D projections onto two- or three-body system.

Branching-fraction measurement of $D^0 \rightarrow K_S K^+ K^-$ 2.93/fb data @ 3.773 GeV

 $BF_{data}(D^0 \to K^0_{s}K^+K^-) = (4.622 \pm 0.045 \,(\text{stat.}) \pm 0.181 \,(\text{sys.})) \times 10^{-3}$

- Relative uncertainty: 4.0 %
- ▶ PDG(2014) value: $(4.47 \pm 0.34) \times 10^{-3} \rightarrow \text{Deviation } 0.81 \sigma$
- Ongoing Dalitz plot analysis

Measurements of the branching fractions for $D^+ \rightarrow K_s K_s K^+$, $K_s K_s \pi^+$ and $D^0 \rightarrow K_s K_s (K_s)$

For modes with two K_s:
$$N_{\text{net}} = N_{K_s^0 \text{sig}} - \frac{1}{2}N_{\text{sb1}} + \frac{1}{4}N_{\text{sb2}} - N_{\text{other}}^{\text{b}}$$

For mode with three K_s: $N_{\text{net}} = N_{K_s^0 \text{sig}} - \frac{1}{2}N_{\text{sb1}} + \frac{1}{4}N_{\text{sb2}} - \frac{1}{8}N_{\text{sb3}} - N_{\text{other}}^{\text{b}}$

Decay modes	$N_{K_S^0 sig}$	N _{sb1}	N _{sb2}	N _{sb3}	$N_{\rm other}^{\rm b}$	N _{net}	€ (%)	$\mathcal{B}~(imes 10^{-4})$
$D^+ \rightarrow K^0_S K^0_S K^+$	3616 ± 66	97 ± 19	6 ± 8	-	18 ± 2	3551 ± 67	8.27 ± 0.04	25.4 ± 0.5
$D^+ \rightarrow K^0_S K^0_S \pi^+$	5643 ± 88	1464 ± 68	69 ± 19	_	31 ± 3	$\textbf{4897} \pm \textbf{94}$	10.72 ± 0.04	$\textbf{27.0} \pm \textbf{0.5}$
$D^0 \rightarrow K^0_S K^0_S$	888 ± 36	626 ± 31	3 ± 6	-	0	576 ± 39	16.28 ± 0.30	1.67 ± 0.11
$D^0 \to K^0_S K^0_S K^0_S$	622 ± 27	24 ± 8	14 ± 6	0	16 ± 3	597 ± 27	3.92 ± 0.05	7.21 ± 0.33

 $D \rightarrow K(\pi)e^+\nu_{\alpha}$

Search for the rare decay $D^+ \rightarrow \gamma e^+ v_e$

- Not subject to the helicity suppression rule due to the presence of a radiative photon.
- Predicted rates are reachable range :
 - e.g., J.-C. Yang and M.-Z. Yang predict B(D⁺ $\rightarrow \gamma e^+ \nu_e$) ~ 2×10⁻⁵ via Factorization.

Search for the radiative leptonic decay $D^+ \rightarrow D^0 e^+ v_{\rho}^{2.93/fb \ data @ 3.773 \ GeV}$

Applying the SU(3) symmetry for the light quarks, this rare decay branching fraction can be predicted by theoretical calculation, and its theoretical value is 2.78 x 10⁻¹³ [EPJC 59, 841 (2009)]

