

Kaon Rare Decays

Cristina Lazzeroni

University of Birmingham XIIIth Rencontres du Vietnam, Flavour Physics Conference ICISE, Quy Nhon,VN, 12-19 August 2017

European Research Council Established by the European Commission

Kaon role in SM and beyond (I)

- * Associated production of kaons: idea of hadronic flavour
- Strangeness as a quantum number
- Meson-antimeson oscillation
- * θ - τ puzzle and parity violation
- Quark model and SU(3)
- Flavour mixing, Cabibbo angle
- **\Leftrightarrow** CP violation ϵ
- * Direct CP violation $\epsilon'/\ \epsilon$

Virtual contributions from particles in loop processes:

deviations have often preceded direct observation of new particles

Flavour changing Neutral Currents forbidden at tree-level in SM, Hence necessary sensitive to New Physics

Kaon role in SM and beyond (II)

Mixing processes ($\Delta F=2$) and rare decays ($\Delta F=1$) :

- Complement each other in search for NP
- Test Minimal Flavour Violation
- Search for forbidden processes

LHC direct searches probe few TeV, or O(10⁻¹⁹) m scale Kaon Δ F=2 and Δ F=1 processes can access O(10⁻²¹) m scale, the Zeptouniverse

 Δ F=2 alone is not enough: for example, to decide if new flavour changing dynamic is left-handed or righ-handed nature, need Δ F=1

Depending on RH / LH couplings play, can reach scale up to 2000 TeV

- (i) theoretical control of ϵ_{K} increases steadily (hadronic matrix elements and NNLO QCD under good control, $\epsilon_{K} \propto |V_{cb}|^{4}$ issue improving),
- (ii) ϵ'_{K} now tractable with lattice QCD,
- (iii) upcoming measurements of theoretically clean branching ratios $B(K^+ \to \pi^+ \nu \bar{\nu})$ (by NA62) and $B(K_L \to \pi^0 \nu \bar{\nu})$ (by KØTØ),
- (iv) no new particles found at LHC:
 - ⇒ weaker rationale for Minimal Flavour Violation (MFV)

If the flavour structure of new physics is unrelated to the SM Yukawa sector, one expects the largest effects in Kaon (and $\mu \rightarrow e$) FCNC processes.

CKM triangle

Kaons alone can fully constrain the CKM triangle

Comparison with B physics can provide hints on NP dynamics

Kaon "anomalies"

 $\frac{\epsilon'_{K}}{\epsilon_{K}} = (16.6 \pm 2.3) \times 10^{-4}$ Experiments: NA48, KTeV $\frac{\epsilon'_{K}}{\epsilon_{K}} = (1.1 \pm 4.7_{\text{lattice}} \pm 1.9_{\text{NNLO}} \pm 0.6_{\text{isosp. br.}} \pm 0.2_{m_{t}}) \times 10^{-4}$ (SM) Kitahara, UN, Tremper, JHEP 1612 (2016) 078

The prediction uses the lattice-QCD results from RBC-UKQCD, Phys. Rev. Lett. **115** 212001 (2015).

Buras, Jäger, Gorbahn (JHEP 1511 (2015) 202) find a 2.9σ deviation:

$$\frac{\epsilon'_{K}}{\epsilon_{K}} = (1.9 \pm 4.5) \times 10^{-4} \qquad (SM)$$

See Nierste's talk for details

- The new lattice results for the matrix element $\langle (\pi\pi)_{I=0} | Q_6 | K^0 \rangle$ from RBC-UKQCD points to a tension between the experimental value of ϵ'_{κ} and the Standard-Model prediction.
- If new physics enters through loops, a sizable effect in ϵ'_{K} requires a new source of flavour violation which is much larger then the CKM factor Im $\frac{V_{td}V_{ts}^{*}}{V_{ud}V_{us}^{*}} \sim 6 \cdot 10^{-4}$. But then the effect on ϵ_{K} will typically be too big.
- In the MSSM one can simultaneously enhance \(\epsilon'_K\) and suppress
 the new-physics contributions to \(\epsilon_K\). This requires flavour mixing
 among left-handed squarks, masses of right-handed up-type
 squarks different from those of the down-type squarks, and a
 gluino mass above 1.5 times the mass of the left-handed squarks.

(Buras, KAON2016) Kaon "anomalies"

Requiring CMFV to reproduce data for $\Delta M_{s,d}$ favors low value of V_{cb} in agreement with exclusive determination and upper bound on ϵ_{K} significantly below data.

Requiring CMFV to reproduce data for $\epsilon_{\rm K}$ favors high value of V_{cb} in agreement with inclusive determination and lower bound on $\Delta M_{\rm s,d}$ significantly above data.

Tension between ΔM_s and ϵ_K

Stars of KAON Flavour Physics

They all can give some information about very short distance scales but to identify new physics, correlations with B_{s,d} and D observables, EDMs, Lepton physics crucial

In particular if we want to reach Zeptouniverse without any direct hints from the LHC

Rare kaon decays: $K \rightarrow \pi v \overline{v}$

SM: box and penguin diagrams

Ultra-rare decays with the highest CKM suppression: $A \sim (m_t/m_w)^2 |V_{ts}^*V_{td}| \sim \lambda^5$

- ✤ Hadronic matrix element related to a measured quantity (K⁺→ $\pi^0 e^+ v$).
- Exceptional SM precision.
- Free from hadronic uncertainties.
- ★ Measurement of $|V_{td}|$ complementary to those from B–B mixing or B⁰→ργ.

SM branching ratios Buras et al., JHEP 1511 (2015) 033

Mode	$BR_{SM} \! imes \! 10^{11}$
K⁺→π⁺ν⊽(γ)	8.4±1.0
$K_L \rightarrow \pi^0 \nu \overline{\nu}$	3.00±0.31

The uncertainties are largely parametric (CKM)

Theoretically clean, almost unexplored, sensitive to new physics.

- General Observables Br(K⁺ $\rightarrow \pi^+ \nu \nu$), Br (K_L $\rightarrow \pi^0 \nu \nu$) K $\rightarrow \pi \nu \nu \nu s \epsilon'/\epsilon$, ΔM_K K $\rightarrow \pi \nu \nu \nu s B$ decays (B $\rightarrow \mu \mu$, R_K, R_{D*}, etc) Correlations are model-dependent
- CMFV or generalSpecific models:

Modified Z'/Z TeV SUSY LFV in 3rd generation Etc.... 11

Testing the SM (II)

Modified Z, Z' model used as paradigm:

LH and RH couplings allowed: constraints from other kaon observables

Testing the SM (III)

In our MSSM scenario: Contributions from wino-like chargino box:

> 1703.05786 D'Ambrosio, Crivellin, Kitahara, Nierste

See more details In Nierste's talk

Our MSSM scenario makes falsifiable predictions for $B(K^+ \to \pi^+ \nu \bar{\nu})$ and $B(K_L \to \pi^0 \nu \bar{\nu})$:

Allowed region for the two branching ratios:

 $m_{\tilde{q}_1} = 1.5 \text{ TeV}$ is the mass of the lightest ($\tilde{s}_L - \tilde{d}_L$ -mixed) squark,

 M_3 is the gluino mass, GUT relations for $M_{1,2}$,

M_S is the mass of all other sparticles.

The number in the squares show the value for M_3/M_S needed to cancel the MSSM contribution to ϵ_K .

K_{πνν} Experimental Status

15

Primary Goal: O(10%) precision on measurement of BR(K+ $\rightarrow \pi+\nu\nu$)

Technique: Kaon decay-in-flight experiment

NA62: currently ~200 participants, ~30 institutions.

NA62 collaboration, JINST 12 (2017) P05025 The NA62 detector

- ✤ Expected single event sensitivity for K⁺ decays: BR~10⁻¹².
- ★ Measured kinematic rejection factors (limited by beam pileup & MCS tails): 6×10^{-4} for K⁺→ $\pi^{+}\pi^{0}$, 3×10^{-4} for K→ $\mu^{+}\nu$.
- ♦ Hermetic photon veto: measured $\pi^0 \rightarrow \gamma\gamma$ decay suppression = 1.2×10⁻⁷.
- ✤ Particle ID (RICH+LKr+HAC+MUV): ~10⁻⁷ muon suppression.

High intensity run in 2016

- Stable data collection at ~40% of the nominal intensity; limited by beam structure, including the 50 Hz harmonics.
- Simultaneous data taking for $K_{\pi\nu\nu}$ and rare/exotic decays.
- Extrapolation to end of 2018 (12 months of live time): 7×10¹² K⁺ decays.
- With improved extraction and incremental improvements in efficiency, the target of 10¹³ K⁺ decays by end of 2018 is reachable.

$$K_{\pi+\nu\nu}$$
 kinematics

92% of total **BR(K**⁺):

- Outside the signal kinematic region.
- Signal region is split into Region I and Region II by the $K^+ \rightarrow \pi^+ \pi^0$ peak.

8% of total **BR(K**⁺) including multi-body:

Span across the signal region (not rejected by kinematic criteria).
Rejection relies on hermetic photon system, PID, sub-ns timing. 19

Main K⁺ decay modes (>90% of BR) rejected kinematically.

Design kinematical resolution on m_{miss}^2 has been achieved $(\sigma = 1.0 \times 10^{-3} \text{ GeV}^4/\text{c}^2).$

Measured kinematical background suppression:

 $\sqrt{K^+} \rightarrow \pi^+ \pi^0$: 6×10⁻⁴; $\sqrt{K^+} \rightarrow \mu^+ \nu$: 3×10^{-4} .

Further background suppression: ✓ PID (calorimeters & Cherenkov detectors): μ suppression < 10⁻⁷. ✓ Hermetic photon veto: suppression of $\pi^0 \rightarrow \gamma \gamma$ decays <10⁻⁷. 20

Identification with RICH & HAC

Expect 1.3 SM K_{πνν} decays from total 2016 sample.
 Preliminary statement on background: B/S<0.9.
 Analysis in progress to increase signal acceptance and improve BKG suppression.

NA62 broad physics programme(I)

NA62 approach allows for a broad physics programme:

Signature: high momentum K⁺ (75GeV/c) → low momentum π^+ (15–35 GeV/c). Advantages: max detected K⁺ decays/proton ($p_K/p_0 \approx 0.2$); efficient photon veto (>40 GeV missing energy) Un-separated beam (6% kaons) → higher rates, additional background sources.

♦ NA62 Run 2016–2018: focused on the "golden mode" $K^+ \rightarrow \pi^+ \nu \nu$.

- ✓ Several measurements at nominal SES~10⁻¹²: K⁺→ π^+ A', π^0 →vv.
- ✓ A few measurements do not require extreme SES: $K^+ \rightarrow l^+ N$, ...
- ✓ Sensitivities to most rare/forbidden decays are limited but still often world-leading (~10⁻¹⁰ to ~10⁻¹¹).
- \checkmark Proof of principle for a broad rare & forbidden decay programme.

NA62 broad physics programme(II)

Accelerator schedule	2015 2016 2017 2018	2019 2020	2021 2022 2023	2024
LHC	Run 2	LS2	Run 3	
SPS				NA sto

- **NA62 Run 2021–2024**:
 - \checkmark Existing apparatus with improved trigger logic.
 - \checkmark Evaluate incremental changes for optimal efficiency.
 - ✓ Further $K^+ \rightarrow \pi^+ \nu \nu$ data collection.
 - ✓ Rare/forbidden K⁺ and π^0 decays at SES~10⁻¹²: K⁺ physics: K⁺→ $\pi^+\ell^+\ell^-$, K⁺→ $\pi^+\gamma\ell^+\ell^-$, K⁺→ $\ell^+\nu\gamma$, K⁺→ $\pi^+\gamma\gamma$, ... π^0 physics: π^0 → e^+e^- , π^0 → $e^+e^-e^+e^-$, π^0 → 3γ , π^0 → 4γ , ... Searches for LFV/LNV: K⁺→ $\pi^-\ell^+\ell^+$, K⁺→ $\pi^+\mu e$, π^0 → μe , ...
 - ✓ Beam dump with ~ 10^{18} POT: hidden sector (long-lived HNL, DP, ALP).

See Soldi's talk about the wider NA62 programme

KOTO experiment

26

KOTO detector

"Stopped kaons" technique:

Secondary neutral beam: Momentum = 1.4 GeV/c peak Transverse size = $80x80 \text{ mm}^2$ Composition = K_L, neutrons, photons (high kaon purity) Intensity (2013) = 3×10^{13} ppp on target (25 kW) Intensity (2015-16) = 30/42 kW

Detector:

Fiducial region = $\sim 3m$ Vacuum = 5 10⁻⁷ mbar Csl calorimeter Hermetic γ -veto

2013: First physics result $N(K_L) = 2.4 \times 10^{11}$ $BR(K_L \rightarrow \pi^0 vv) < 5.1 \times 10^{-8}$ (90% CL) [PTEP 2017, 021C01] Background in signal region dominated by neutrons

2015-2016: 20 x statistics of 2013

Modified setup: x 5 reduction in neutron background wrt 2013 Small subsample analyzed: N(K_L) =~ 3.8×10^{11} S.E.S =~ 5.9×10^{-9}

KOTO prospects

Total 2015-2016: S.E.S < 10⁻⁹

X2 POT **X20 POT** single event sensitivity E391a Upper Limit 10-8 **Grossman-Nir Limit** We are here 🔨 G.-N. Limit in 2018? 2021 SM 10-11 1018 10¹⁹ 10²⁰ 10²¹ POT 10^{3} 10² 10⁵ 10⁴ **kW**×days

2015 2017

2015

Upgrades to reach SM:

- New barrel detector
- Beam pipe modification
- Csl both end readout (2018)
- JPARC 42->100 kW (2019)

Idea to make the measurement at the SPS:

- 1) High energy experiment (p_{κ} =70 GeV), complementary
- 2) Photons from K_L decays boosted forward makes photon vetoing easier

3) Perhaps possible to reuse NA62 infrastructure

400 GeV protons on 400 mm Be target Production at 2.4 mrad to optimize K_L versus n For ~100 events and reasonable acceptance: Require 2 x 10¹³ protons per pulse/ 16.8 s = 6 x NA62 Currently not available, would require upgrades

Aim to take ~60 SM events in 5 years from 2026 with S/B~1 Project discussed at CERN as part of Physics Beyond Collider

Main detector/veto systems:

- AFC Active final collimator/upstream veto
- LAV1-26 Large-angle vetoes (26 stations)
 - LKr NA48 LKr calorimeter
- IRC/SAC Small-angle vetoes (SAC in neutral beam)
 - CPV Charged-particle veto

Refined background study and detector studies are in progress

Kaon physics at LHCb

LHCb was designed for heavy flavour physics

This had strong impact on geometry, size of subsystems, acceptance and trigger main mechanism.

The decay length of a kaon is typically much larger than that of a B or a D.

As final states, kaons are present in the vast majority of LHCb programme but kaon decays as a topic of study is difficult: geometry is a limitation, as well as the trigger. However a flexible software trigger and a full reconstruction can mitigate the problem: Upgrade fully software trigger can reach 100% efficiency for kaon physics

 $K_{s} \rightarrow \mu + \mu - :$ see Pescatore's talk

 K_{ς} → $\pi^{0}\mu$ + μ - @LHCb

s→dll decays are potentially sensitive to NP

BR($K_L \rightarrow \pi^0 \mu + \mu -)_{EXP} < 3.8 \ 10^{-10} @90\% CL [KTEV, PRL84 5279]$ Could be enhanced up to one order of magnitude in NP (JHEP09 017)

SM prediction for KL is strongly limited by KS measurement by NA48: BR(K_S $\rightarrow \pi^{0}\mu+\mu$ -)_{EXP} = (2.9 ^{+1.5} _{-1.2} ± 0.2) x10⁻¹⁰ [PLB599 197]

 K_s → $\pi^0\mu$ + μ - @LHCb

Use BDT to suppress combinatorial background (physics background is negligible) Use RUN I data to get realistic estimate of background for sensitivity studies

Strongly limited by hardware trigger.

Sensitivity better than NA48 achievable with fully software trigger

Conclusions

Kaon physics has played a large role in establishing the basis of the SM, and now has a fundamental role in the search for NP.

Kaon physics is a broad subject, with several contributing experiments: KLOE2, KOTO, LHCb, NA62, OKA among others. I have concentrated on rare decays.

The NA62 and KOTO experiments are exploring physics beyond SM via the ultra-rare decays $K^{+,0} \rightarrow \pi^{0,+} \nu\nu$: $K^+ \rightarrow \pi^+ \nu\nu$: NA62 expects to reach SM sensitivity soon; BR measurement expected in the next few years $K^0 \rightarrow \pi^0 \nu\nu$: KOTO expects to reach < 10⁻¹⁹ sensitivity soon; SM sensitivity expected by 2021

The LHCb experiment is placing limits on K_s rare decays. Will reach the full potential after fully software trigger is in place

Spares

Beam tracker: the Gigatracker

Tracker design:

Three Si pixel stations in the beam.
Operation at beam rate up to 800 MHz.
In total, 54k pixels (300×300 μm²).
Thickness: <0.5% X₀ per station.

Performance at 40% beam intensity: $\Track reconstruction efficiency: 75%.$ $\Time resolution \sigma(t_{BeamTrack}) \approx 100 \text{ ps.}$ $\Beam track mis-tagging probability: 1.7%.$ $\Spatial matching: beam/downstream track intersection, \sigma_{CDA} \approx 1.5 \text{ mm.}$

- PNN trigger: RICH, CHOD signals and LAV, MUV and LKr vetos at L0; KTAG, LAV and STRAW at L1

- Single π^+ topology, 15 < P_{π} < 35 GeV/c
- K/ π matching in time (KTAG/GTK vs CHOD/RICH)
- K/ π matching in space (GTK and STRAW track)

- Fiducial decay region: 110/115 < Z_v < 165 m and Z_v vs π position at STRAW (remove early decays; CHANTI against interactions in GTK3)

- Particle ID (Cherenkov, calorimeters, muon veto)
- Photon veto

- Signal regions: 2 regions in m_{miss}^2 vs P_{π^+} shown on next slide Analysis done in 3D space: m_{miss}^2 , m_{miss}^2 (RICH), m_{miss}^2 (no GTK) (kinematical suppression for $\pi^+\pi^0$ and $\mu^+\nu$ measured on data with events selected using calorimeters)

Missing mass resolution, GTK matching

Time and space matching

Mis-tagging probability: ~1.7% (75% efficiency)

$K_{\pi+\nu\nu}$ 5% of 2016 sensitivity

Normalization: $K^+ \rightarrow \pi^+ \pi^0$ (in $\pi^+ \pi^0$ region before γ rejection on minimum bias events) 5% of 2016 statistics: N(K decays) ~ 2.3 x 10¹⁰ N(normalization) = 3.3 x 10⁸ Acceptance (normalization) ~ 7% Acceptance signal ~ 3.3% N(Expected $\pi \nu \nu$) ~ 0.064 assuming SM branching ratio

	N(K decays) ~ 2.3 × 10	¹⁰ [5% 2016 statistics]
Process	Expected Events	Branching ratio
$K^+ \to \pi^+ \pi^0$	0.024	0.2066
$K^+ \to \mu^+ \nu$	0.011	0.6356
$K^+ \to \pi^+ \pi^+ \pi^-$	0.017	0.0558
Early Decays	< 0.005	

KOTO 2013 data

		T 500			
Dealerson deserved	Number of courts	450 Expected	1		
Background source	Number of events	E 400 87		1	0
$K_L \rightarrow 2\pi^0$	0.047 ± 0.033	a 400 87		0.17±0.12	0.03±0.03
$K_L \rightarrow \pi^+\pi^-\pi^0$	0.002 ± 0.002	350	· · ·		
$K_L \rightarrow 2\gamma$	0.030 ± 0.018	≊ 300 -			0.16±0.11
Pileup of accidental hits	0.014 ± 0.014	250			
Other K _L background	0.010 ± 0.005	200		1	0 02 0 03
Halo neutrons hitting NCC	0.056 ± 0.056	150		0.34±0.10	0.03±0.03
Halo neutrons hitting the calorimeter	0.18 ± 0.15	100			
Total	0.34 ± 0.16			9 7 24+0 52	0 01-0 01
		50	1.08±0.2	5	0.0120.01
		1000 1500	2000 2500 3	3000 3500 4000 450	<u> </u>
		1000 1000	2000 2500 .		Rec. π ⁰ Z _{vts} [mm]

• FCNC loop processes: s→d coupling and highest CKM suppression

- Very clean theoretically: Short distance contribution. No hadronic uncertainties.
- SM predictions [Buras et al. JHEP 1511 (2015) 33]

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = (8.39 \pm 0.30) \cdot 10^{-11} \left(\frac{|V_{cb}|}{0.0407}\right)^{2.8} \left(\frac{\gamma}{73.2^{\circ}}\right)^{0.74} = (8.4 \pm 1.0) \cdot 10^{-11}$$
$$BR(K_{L} \to \pi^{0} \nu \bar{\nu}) = (3.36 \pm 0.05) \cdot 10^{-11} \left(\frac{|V_{ub}|}{0.00388}\right)^{2} \left(\frac{|V_{cb}|}{0.0407}\right)^{2} \left(\frac{\sin \gamma}{\sin 73.2}\right)^{2} = (3.4 \pm 0.6) \cdot 10^{-11}$$

Testing the SM (III)

CMFV with Z' (5 TeV):

JHEP 1511

JHEP 1511

Testing the SM (IV)

CMFV with modified **Z**:

Filled regions: uncertainties from V_{ub} , V_{cb} , V_{us} Dashed regions: uncertainties from all other parameters as well

arXiv:1503.02693v2

SM correlations Could be broken already in CMFV

Neutral beamline layout

Testing the SM (III)

CMFV with modified Z:

CMFV with Z' (5 TeV): JHEP 1511

