XIIIth Rencontres du Vietnam Gặp gỡ khoa học tại Việt Nam lần thứ 13

Flavour Physics Conference

ICISE, QUY NHON, VIETNAM, AUGUST 13 - 19, 2017

Status of JUNO

Liang Zhan

Institute of High Energy Physics, Beijing On behalf of the JUNO Collaboration

A multi-purpose neutrino experiment

- Jiangmen Underground Neutrino Observatory
- 27-36 GW reactor power, 20 kton LS detector, 3%/VE energy resolution
- Proposed in 2008, approved in 2013
- Rich physics possibilities
 - Mass hierarchy
 - Precision measurement of 3 mixing parameters
 - Supernovae neutrino
 - Geoneutrino
 - Solar neutrino
 - Atmospheric neutrino
 - Exotic searches including nucleon decay, dark matter

Neutrino Physics with JUNO, J. Phys. G 43, 030401 (2016)

Neutrino Mass Hierarchy

- Large θ_{13} opens a door to neutrino MH and CP violating phase, as the focus of next generation neutrino experiments.
- MH can be determined utilizing
 - Matter effects of accelerator (DUNE, LBNO) and atmospheric (PINGU, HK, INO) neutrinos
 - Oscillation interference effects of reactor neutrinos driven by Δm_{32}^2 and Δm_{31}^2 $P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$

$$P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21})$$

$$P_{31} = \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{31})$$

$$P_{32} = \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32})$$

3

Sensitivity of MH Determination

Assume NH as true MH, and fit the spectrum with false and true MH cases respectively, and we get $\Delta\chi^2 = \chi^2$ (false)- χ^2 (true)

$\chi_{\text{REA}}^2 = \sum_{i=1}^{N_{\text{bin}}} \frac{\left[M_i - T_i \left(1 + \sum_k \alpha_{ik} \epsilon_k\right)\right]^2}{M_i} + \sum_k \frac{1}{N_k} \frac{1}{N_k} \left[\frac{M_i - T_i \left(1 + \sum_k \alpha_{ik} \epsilon_k\right)}{M_i}\right]^2}{M_k}$ 25 Normal true MH 20 Δχ² (Δm²_{ee}) 15 True MH (ideal) True MH (real) 5 False MH (ideal) False MH (real 2.42 2.48 2.50 2.342.38 2.402.44 2.46 2.36 $|\Delta m^2_{ee}| (X10^{-3} eV^2)$

Nominal experimental setup

- Detector size: 20kt
- Energy resolution: $3\%/\sqrt{E}$
- Thermal power: 36 GW
- Running time: 6 years

Measurement of Oscillation Parameters

- Good energy resolution and proper baseline help to measure the Δm^2_{21} and Δm^2_{32} driven oscillations simultaneously.
- Precisions of three parameters (Δm_{21}^2 , Δm_{32}^2 and $\sin^2 \theta_{12}$) reach sub-percent level, several times improvement compared with current precision.
- Probing the unitarity of U_{PMNS} to ~1% level

	Nominal	+B2B (1%)	+BG	+EL (1%)	+NL (1%)
$\sin^2 \theta_{12}$	0.54%	0.60%	0.62%	0.64%	0.67%
Δm_{21}^2	0.24%	0.27%	0.29%	0.44%	0.59%
$ \Delta m_{ee}^2 $	0.27%	0.31%	0.31%	0.35%	0.44%

Other Physics Potentials

- Supernova neutrinos
 - Less than 20 events observed so far
 - Estimated number of neutrino events in JUNO at distance of 10 kpc and typical SN parameters

Channel	Turne	Events for different $\langle E_{\nu} \rangle$ values			
Unamiei	rybe	12 MeV	$14 \mathrm{MeV}$	$16 { m MeV}$	
$\overline{\nu}_e + p \to e^+ + n$	$\mathbf{C}\mathbf{C}$	4.3×10^3	$5.0 imes 10^3$	5.7×10^{3}	
$\nu + p \rightarrow \nu + p$	NC	$6.0 imes10^2$	$1.2 imes 10^3$	$2.0 imes 10^3$	For JUNO:
$\nu + e \rightarrow \nu + e$	NC	$3.6 imes10^2$	$3.6 imes10^2$	$3.6 imes10^2$	Good energy
$\nu + {}^{12}\mathrm{C} \rightarrow \nu + {}^{12}\mathrm{C}^*$	\mathbf{NC}	$1.7 imes10^2$	$3.2 imes10^2$	$5.2 imes 10^2$	recolution all
$\nu_e + {}^{12}\mathrm{C} \rightarrow e^- + {}^{12}\mathrm{N}$	$\mathbf{C}\mathbf{C}$	$4.7 imes 10^1$	$9.4 imes 10^1$	$1.6 imes10^2$	resolution, an
$\overline{\nu}_e + {}^{12}\mathrm{C} \rightarrow e^+ + {}^{12}\mathrm{B}$	$\mathbf{C}\mathbf{C}$	$6.0 imes10^1$	$1.1 imes 10^2$	$1.6 imes 10^2$	types of neutrinos

Geoneutrinos

- Current results: KamLAND: 164 \pm 27 (talk at Neutrino Research and Thermal Evolution of the Earth), Borexino: 23.7 \pm 6 (PRD 92 (2015) 031101(R))
- JUNO, X10 statistics, but huge reactor antineutrino background
- Solar neutrinos, atmosphere neutrinos, nucleon decay, sterile neutrinos

Location of JUNO

Requirements on JUNO experiment

- 20 kton and 6 years data taking → 100000 antineutrino events.
- 3%/VE energy resolution → precise measurement of oscillation antineutrino spectrum (~1200 p.e./MeV)

Experiment	Daya Bay	BOREXINO	KamLAND	JUNO
LS mass	20 ton	~300 ton	~1 kton	20 kton
Coverage	~12%	~34%	~34%	~80%
Energy resolution	~7.5%/√E	~5%/ √ E	~6%/√E	~3%/ √ E
Light yield	~ 160 p.e. / MeV	~ 500 p.e. / MeV	~ 250 p.e. / MeV	~ 1200 p.e. / MeV

JUNO detector

- 20 kton of liquid scintillator in a 35.4 m acrylic sphere
- 18000 20" PMT and 25000 3" PMT to detect photons with a coverage of ~78%

- Top tracker: plastic scintillator
- Water pool: Cherenkov veto, 44 m deep and 43.5 m high
- Design goals: large target mass with an unprecedented energy resolution (3%/VE)

JUNO PMT systems

- Design goals: 1200 p.e./MeV
- Requirements
 - High coverage
 - High photon detection efficiency
 - Acceptable dark noise and radioactivity level
- Double calorimetry PMT systems
 - 18000 20" PMTs: 75% coverage, good energy resolution
 - 25000 3" PMTs: 2.5% coverage, good timing

JUNO civil construction

- Experiment hall overburden: ~700 m (~1900 MWE)
- Vertical shaft and slope tunnel accomplished

JUNO collaboration

juno_coll_map2.tiff

Country	Institute		
Armenia	Yerevan Physics Institute		
Belgium	Universite libre de Bruxelles		
Brazil	PUC		
Brazil	UEL		
Chile	PCUC		
Chile	USM		
China	BISEE		
China	Beijing Normal U.		
China	CAGS		
China	ChongQing University	1	
China	CIAE		
China	DGUT		
China	ECUST		
China	Guangxi U.		
China	Harbin Institute of Technology		
China	IHEP		
China	Jilin U.		
China	Jinan U.		
China	Nanjing U.		
China	Nankai U.		
China	NCEPU		
China	Pekin U.		
China	Shandong U.		
China	Shanghai JT U.		
China	IMP-CAS		
China	SYSU		
China	Tsinghua U.		
China	UCAS		
China	USTC		
China	U. of South China		
China	Wu Yi U.		
China	Wuhan U.		
China	Xi'an JT U.		
China	Xiamen University		
China	NUDT		

Established in July 2014 71 institutions/Universities 571 collaborators

Czech	Charles U.	
Finland	University of Oulu	
France	APC Paris	
France	CENBG Bordeaux	
France	CPPM Marseille	
France	IPHC Strasbourg	
France	LLR Palaiscau	
France	Subatech Nantes	
Germany	FZJ ZEA2	
Germany	RWTH Aachen U.	
Germany	TUM	
Germany	U. Hamburg	
Germany	IKP FZJ	
Germany	U. Mainz	
Germany	U. Tuebingen	
Italy	INFN Catania	
Italy	INFN di Frascati	
Italy	INFN-Ferrara	
Italy	INFN-Milano	
Italy	INFN-Milano Bicocca	
Italy	INFN-Padova	
Italy	INFN-Perugia	
Italy	INFN-Roma 3	
Pakistan	PINSTECH (PAEC)	
Russia	INR Moscow	
Russia	JINR	
Russia	MSU	
Slovakia	FMPICU	
Taiwan	National Chiao-Tung U.	
Taiwan	National Taiwan U.	
Taiwan	National United U.	
Thailand	NARIT	
Thailand	PPRLCU	
Thailand	SUT	
USA	UMD1 4	
USA	UMD2	

JUNO schedule

Summary

• JUNO has rich physics possibilities with the main goals to determine mass hierarchy and precisely measure oscillation parameters.

• JUNO experiment is under construction and is expected to start data taking in 2020.

Thanks!